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Abstract. Heusler alloys have been known for about a century, and predictions of magnetic moment values using 

Slater-Pauling rule have been successful for many such materials. However, such a simple counting rule has been 

found not to always work for all Heusler alloys.  For instance, Fe2CuAl has been found to have magnetic moment of 

3.30 µB per formula unit although the Slater-Pauling rule suggests the value of 2 µB. On the other hand, a recent 

experiment shows that a non-stoichiometric Heusler compound Fe2Mn0.5Cu0.5Al possesses magnetic moment of ~4 

µB, closer to the Slater-Pauling prediction for the stoichiometric compound. Such discrepancies signify that the theory 

to predict the magnetic moment of Heusler alloys in general is still far from being complete. Motivated by this issue, 

we propose to do a theoretical study on a full-Heusler alloy Fe2MnAl to understand the formation of magnetic moment 

microscopically. We model the system by constructing a density-functional-theory-based tight-binding Hamiltonian 

and incorporating Hubbard repulsive as well as spin-spin interactions for the electrons occupying the d-orbitals. Then, 

we solve the model using Green’s function approach, and treat the interaction terms within the mean-field 

approximation. At this stage, we aim to formulate the computational algorithm for the overall calculation process. Our 

final goal is to compute the total magnetic moment per unit cell of this system and compare it with the experimental 

data.   

INTRODUCTION 

Heusler alloys, discovered by Fritz Heulser in 1903, are among the most exciting materials because of their 

magnetic properties despite that they are not made from magnetic elements. For instance, an alloy with the 

composition of Cu2MnAl behaves as ferromagnet although none of its constituent elements is magnetic by itself 

[1, 2]. Generally, full-Heusler alloys with general formula X2YZ (X and Y are transition metals, and Z is a main 

group element) are crystallized in the L21 structure which is composed of four interpenetrating face-centered-

cubic (fcc) lattices (Fig. 1). Their atomic positions are described by Wyckoff coordinates as: X (0,0,0), Y 

(1/4,1/4,1/4), X (1/2,1/2,1/2) and Z (3/4,3/4,3/4) [3, 4]. Graf et al. [5] explains that the properties of Heusler 

compounds are strongly dependent on the atomic order, so a careful analysis is needed to understand the crystal 

structure-to-property relation of Heusler compounds. 

Surprisingly, the magnetic moments of many Heusler compounds can be predicted using Slater-Pauling rule 

by counting the number of valance electrons, so that for full-Heusler compounds with four atoms per unit cell the 

magnetic moment follows the formula ����� = �� − 24 [5]. Recently, Gasi et al. [6] found that Fe2CuAl does 

not follow the Slater-Pauling rule, but the non-stoichiometric Fe2Mn0.5Cu0.5Al does [7]. This fact indicates that 

the theory to predict the magnetic moment of Heusler alloys may still be far from being complete. Motivated by 

this, we propose to do a theoretical study on a full-Heulser alloy Fe2MnAl to understand the formation of magnetic 

moment microscopically using a density-functional-theory-based tight-binding model. 

In this study, we model the Fe2MnAl system by constructing a tight-binding Hamiltonian, whose parameters 

are obtained through density functional theory (DFT) calculation, incorporating Hubbard repulsive and spin-spin 

interactions for the electrons occupying the d-orbitals. The model is then solved using Green’s function approach, 

with the interaction terms treated within mean-field approximation. Our ultimate goal of study is to compute the 

magnetic moment per unit cell of this system, compare it with the experimental data, and analyze the result 

particularly in its relation to the Slater-Pauling rule. As the introductory part of this work, however, in this paper 

we only present how we formulate the computational algorithm for the overall calculation process. 
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FIGURE 1. Full Heusler alloy Fe2MnAl crystal structure. 

 
TABLE 1.  Basis states for constructing the tight-binding Hamiltonian of full-Heusler Fe2MnAl. |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ��� � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ��� � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ���  � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ��� � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ���  � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ���  � �Fe� − ������� |Fe� − �� �Fe� − ���� |Fe� − ���� �Fe� − ���� |Fe� − ��� � �Fe� − ������� |Fe − �� �Fe − ���� |Fe − ���� �Fe − ���� |Fe − ���  � �Fe − ������� |Mn� − �� �Mn� − ���� |Mn� − ���� �Mn� − ���� |Mn� − ��� � �Mn� − ������� |Mn� − �� �Mn� − ���� |Mn� − ���� �Mn� − ���� |Mn� − ��� � �Mn� − ������� |#$% − �� �Mn� − ���� |Mn� − ���� �Mn� − ���� |Mn� − ��� � �Mn� − ������� |Mn� − �� �Mn� − ���� |Mn� − ���� �Mn� − ���� |Mn� − ��� � �Mn� − ������� |Al� − �� |Al� − (�� �Al� − (�� |Al� − (�� |Al� − �� |Al� − (�� �Al� − (�� |Al� − (�� |Al� − �� |Al� − (�� �Al� − (�� |Al� − (�� |Al� − �� |Al� − (�� �Al� − (�� |Al� − (�� 

MODEL 

The crystal structure of the full-Heusler alloy Fe2MnAl can be described using Wyckoff coordinates as: Fe 

(0,0,0), Mn (1/4,1/4,1/4), Fe (1/2,1/2,1/2) and Al (3/4,3/4,3/4). From the 88 valence orbitals involved in the unit 

cell of Fe2MnAl listed in Table 1, we define the basis states to construct our tight-binding Hamiltonian that serves 

as the non-interacting part of our full Hamiltonian. 

The full Hamiltonian itself reads as ) = ∑ +̂-./0-./ 1)234./56+̂-./ − 78 ∑ �/9,;<=>=,9,;,? ⋅ �/9, ?<=> + B ∑ $9,;↑<=> $9,;↓<=>=,9,; .                              (1) 

The first term of Equation 1 denotes the non-interacting or the kinetic part of the Hamiltonian. Here, 1)234./56 is 

an 88×88 matrix defined in momentum space whose elements are constructed within tight-binding approximation 

using the above 88 basis states. The elements of the matrix 1)234./56 in Equation 1 can be written as 

  )2 F,G34./5 = HFIF,G − JF,G ∑ K�F-./⋅L../MML../MM ,                                                             (2) 

where HF denotes the on-site energy corresponding to the orbital N, IF,G a Kronecker delta, JF,G denotes the hopping 

parameter connecting orbitals N and O between nearest-neighbor atoms, and I/PP represents the nearest neighbor 
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translation vector. Meanwhile, +̂-./0 (+̂-./  ) is a row (column) vector whose each of its element contains the creation 

(annihilation) operators corresponding to each basis orbital. 

In the second term of Equation 1, ∑ �/9,;<=>=,9,;,? ⋅ �/9, ?<=>  represents the interaction between spins of electrons 

occupying different d-orbitals in the same atom. Q is index of the unit cell, while R denotes site having d-orbitals 

in a unit cell. S and T denote components of d-orbitals. The dot product of two spin operators, �/; ⋅ �/? , can be 

expanded as �/; ⋅ �/? = ��;��? + ��;��? + ��;��? .     (3) 

n terms of the creation and annihilation operators and the Pauli matrices, the above spin dot product expands 

further as 

 �/; ⋅ �/? =  UℏWXW 3Y;↑0 Y;↓0 5   U0 11 0X  UY;↑Y;↓X 3Y?↑0 Y?↓0 5  U0 11 0X UY?↑Y?↓X   +                        
     UℏWXW 3Y;↑0 Y;↓0 5 U0 −NN 0 X UY;↑Y;↓X 3Y?↑0 Y?↓0 5 U0 −NN 0 X UY?↑Y?↓X   +                              
    UℏWXW 3Y;↑0 Y;↓0 5 U1 00 −1X UY;↑Y;↓X 3Y?↑0 Y?↓0 5 U1 00 −1X UY?↑Y?↓X .                   (4) 

To simplify our further calculation, we choose the z-direction to be the direction of the net magnetic moment of 

the unit cell. Then, upon applying mean-filed approximation, the terms corresponding to the average values of the 

spin components along the x- and y-directions vanish. Therefore, the first and second term of Equation 2 vanish 

accordingly, leaving only the terms corresponding to the z components  

 �/; ⋅ �/? ≅ UℏWXW 13$;↑〈$?↑ 〉 + $?↑〈$;↑ 〉 − 〈$;↑ 〉〈$?↑ 〉5 −                                                              3$;↑〈$?↓ 〉 + $?↓〈$;↑ 〉 − 〈$;↑ 〉〈$?↓ 〉5 −                                                              3$;↓〈$?↑ 〉 + $?↑〈$;↓ 〉 − 〈$;↓ 〉〈$?↑ 〉5 +                                                              3$;↓〈$?↓ 〉 + $?↓〈$;↓ 〉 − 〈$;↓ 〉〈$?↓ 〉56,                       (5) 

where Y↑0Y↑ = $↑ (Y↓0Y↓ = $↓> denotes occupation number operator of electron with spin up (down).  

The last term of Equation 1 represents Hubbard local repulsive interaction. Similar to our treatment to the 

second term of Equation 1, we also apply mean-field approximation to this term such that  $9,;↑$9,;↓ ≈ $9,;↑`$9,;↓� + $9,;↓`$9,;↑� − `$9,;↑�`nγ,α↓�.      (6) 

FORMULATION OF THE METHOD 

In the kinetic part of Equation1, the matrix 1)234./56 is constructed out of 88 basis orbital states in the Fe2MnAl 

unit cell, giving it a structure of  

1)234./56 = a )b,b ⋯ )b,dd⋮ ⋱ ⋮)dd,b … )dd,dd
h     (7) 

The parameter values of HF and JF,G defining each element of 1)234./56 through Equation 2 can in principle be 

guessed purely intuitively with some physical considerations. However, in order to obtain more realistic values 

we extract those parameter values by first performing a DFT calculation, then extract the tight-binding parameters 

from the DFT result using a computational package called Wannier90 [8]. 

To solve our model, we use a standard many-body approach that relies on Green’s functions. For our particular 

purpose, we work with retarded Green’s function defined in matrix form through the Dyson equation  1ij34./, k56 = l<k + N0m>nop − 1)234./56 − 1Σ34./, k56r�b.   (8) 

Here the mean-field treatment implies that self-energy matrix becomes independent of both 4./ and k, that is,  1Σ34./, k56 ≈ nΣp.      (9) nΣp depends on the average occupation numbers of electrons of the d-orbitals as the manifestation of  the mean-

field treatment of the second and third terms of the Hamiltonian defined in Equation 1. Thus, the average 

occupation numbers of electrons of the d-orbitals, and hence, also the self-energy matrix, are to be calculated self-

consistently, starting with some initial guesses. For this purpose the parameters 78 and B are to be determined a 

priori. 

 During the iteration process we need to calculation both the partial density of states (PDOS) and the total 

density of states (DOS) of the system, respectively, as PDOS<k> = − bw bx ∑ Im-./ i;;j 34./, k5,      (10) 
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DOS<k> = − bw bx ∑ Im Tr-./ 1ij34./, k56.     (11) 

N is the total number of 4./-points in the Brillouin zone, which is equal to the number of unit cells in the system. 

Further, we need to determine the chemical potential, }, of the system by imposing the appropriate total number 

of  valence electrons, $~�~��, as a constraint, that is $~�~�� = � �k��� DOS<k>�<k, �, }>,              (12) 

with �<k, �, }> denoting the Fermi-Dirac distribution function defined as �<k, �, }> = b
������� mb .                 (13) 

The obtained chemical potential is then used to re-compute the spin-resolved average occupation numbers of the 

d-electrons 〈$;↑<↓>〉 = � �k��� PDOS�↑<↓><k>�<k, �, }>,                   (14) 

which are then used to re-compute the self-energy matrix nΣp. When the difference between the initial guess and 

the calculated value of nΣp is still bigger than some tolerance, some mixture of the initial guess and the calculated 

value of nΣp is used as a new initial guess, and then the process repeats back from Equation 8 to Equation 14. The 

cycle stops when the convergence is achieved. 

After the self-consistency is achieved, we can calculate the net up and down electron spins of the system using 

equation 〈$↑<↓>〉 = � �k��� DOS↑<↓><k>�<k, �, }>.     (15) 

And finally, we calculate the magnetic moment of the system by the following equation � = 〈$↑〉 − 〈$↓〉.                               (16) 

For Fe2MnAl structure, if we use the primitive unit cell, the resulting value of � already directly gives us the net 

magnetic moment value per formula unit of Fe2MnAl in the unit of Bohr magneton, }�. The entire calculation 

process can be summarized in the following flow chart (Fig. 2). 

 

 

FIGURE 2. Mean-field algorithm. 
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SUMMARY 

We have formulated the tight-binding based algorithm to calculate the net magnetic moment of Fe2MnAl to 

be solved within mean-field approximation. Our next step is to develop the code and do the computation. The 

desired final results are to be compared with the existing experimental and other theoretical studies. 
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