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Abstract. In semiconductors containing transition metal elements having d orbitals in their valence and/or conduction
band(s), which we consider as strongly correlated semiconductors, electron-electron (e-e) interactions may play a more
significant role. We hypothesize that such kind of semiconductors would have band structures, including their band
gaps, being rather sensitive to temperature change due to e-e interactions. We construct the model Hamiltonian through
tight-binding approximation incorporating e-e interactions in the self energy. We solve the model within GW method.
The GW self-consistent calculation is performed numerically in the Matsubara frequency domain. Then, we do analytic
continuation using Padé approximant to obtain the retarded Green function defined in the real frequency domain. Using
this retarded Green function, in principle, we can calculate and analyze the density of states (DOS) at various temperatures
for short-ranged as well as long-ranged repulsive Coulomb interactions. However, in this paper we only present our
calculation results for short-range interactions. Our results show that the correlation effects become stronger as temperature
is decreased, which reflect in the fact that the band gap increases and chemical potential shifts to a higher energy due to
the presence of e-e repulsive interactions.

Keywords: strongly-correlated systems, band-structure renormalization, semiconductors, electron-electron interactions,
GW method

INTRODUCTION

Almost in all first-principles or modeling calculations of semiconductors that do not take into account e-e in-
teractions the resulting band gap is too much underestimated as compared to experimental data. Most conventional
semiconductors, such as Ge, Si, or GaAs, may be classified into non-correlated systems or weakly correlated systems
in which e-e interactions do not play any significant role. For such semiconductors, their band gaps may be insensitive
to temperature change. Meanwhile, in semiconductors containing transition metal elements having d orbitals in their
valence and/or conduction band(s), which we consider as strongly-correlated semiconductors, the e-e interactions may
play a more significant role. To remedy this problem, e-e interactions need to be incorporated.

There are various approximate techniques to incorporate e-e interactions in the calculations, such as mean-field ap-
proximations, perturbative approach, etc. GW method is among the well-known techniques for this purpose. However,
its implementation has been mostly applied to the Density Functional Theory (DFT) based framework, which to some
extent, not flexible to modify. In a previous study, we started the development of tight-binding based GW technique
applied to graphene [1]. While our method applied to graphene still needs further improvement, here we would like
to extend this development to apply to semiconductors, by developing GW method that is suitable for tight-binding
based semiconductor Hamiltonian. We hypothesize that semiconductor properties including the band gap would be
rather sensitive to temperature because of the e-e interactions. Our results qualitatively confirm that e-e interactions
tend to increase the semiconductor band gap, and the correlation effects become stronger as we decrease temperature.
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MODEL HAMILTONIAN

To simplify our calculations while still expecting some meaningful qualitative results, we model the hypothetical
semiconductor we study by considering only two bands separated with a band gap, with the chemical potential lying
inside the band gap. The two bands are constructed through tight-binding approximation on a simple cubic lattice.

The non-interacting part of the model Hamiltonian H0 in k-space (momentum space) can be written as

H0 =
∑
k,σ

(
a†k,σ b†k,σ

) ( ε1(k) 0
0 ε2(k)

) (
ak,σ
bk,σ

)
. (1)

In Equation 1 a†k,σ, b
†

k,σ and ak,σ, bk,σ are the creation and annihilation operators corresponding to the upper (con-
duction) band and the lower (valence) band, respectively, with k being the corresponding wave vector defined in the
cubic Brillouin zone and σ the spin of the hopping electrons. The diagonal matrix in Equation 1 contains the energy
dispersions of the two bands derived from tight-binding approximation a simple cubic lattice,

ε1(k) = −2t(cos kxa + cos kya + cos kza − 3) + Ec

ε2(k) = 2t(cos kxa + cos kya + cos kza − 3) + Ev, (2)

where Ec refers to the minimum energy of the conduction band, and Ev refers to the maximum energy of the valence
band.

Incorporating the e-e interactions the full Hamiltonian reads as

H = H0 +
∑

k,k′,q

Uaa(q)a†k−qa†k′+qak′ak + Uab(q)b†k−qa†k′+qak′bk + Ubb(q)b†k−qb†k′+qbk′bk, (3)

in which Uaa(q), Uab(q), Ubb(q) are the e-e Coulomb interactions between two electrons coming from same and
different bands defined in momentum space.

GW ALGORITHM

The GW algorithm has the purpose of finding the Green function self-consistently along with the self-energy
defined in Matsubara frequency domain. The algorithm is derived from Feynman diagrams describing the Dyson
equation, the electron-hole polarization, and the renormalized Coulomb interaction [2, 3], depicted as the following

We can start GW algorithm with the construction of Green function matrix [G(k, iωn)] through the Dyson equation
in matrix form as

[G(k, iωn)] =
[
[G0(k, iωn)]−1 − [Σ(k, iωn)]

]−1
, (4)

where the bare Green function matrix is defined as [G0(k, iωn)] =
[
(iωn + µ)[I] − [H0(k)]

]−1, with [H0(k)] being
the non-interacting part of the Hamiltonian matrix (the middle matrix on the r.h.s. of Equation 1), and µ being the
chemical potential. Customarily, we can initialize the self energy matrix with [Σinitial(k, iωn)] = 0, and µ with some
guessed value.

Next, we compute the polarization bubble Παβ(q, iωn),

Παβ(q, iωx) = T
∑
ωn

∑
k

Gαβ(k, iωn)Gαβ(k − q, iωn − iωx) (5)

where k and q represents the electron and the virtual photon momenta, respectively. Here, the scatterings involve
umklapp processes, namely, if the resulting k − q vector falls out of the Brillouin Zone (BZ), it must be brought back
to the BZ by adding or substracting it with the shortest corresponding G vector.

Once the polarization bubble has been obtained, we can calculate the dressed interaction W(q, iωx) from the bare
interaction V(q) within Random Phase Approximation (RPA), as described by the diagrams in Fig. 1b, for which the
mathematical formulation can be recast into a matrix equation

[W(q, iωx)] =
[
[I] − [V(q)][Π(q, iωx)]

]−1
[V(q)], (6)
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FIGURE 1. Feynman diagrams describing GW algorithm: (a) Dyson equation showing the relation between the
dressed Greens function G (shown as bold arrows, the self-energy Σ, and bare Green function G0 (shown as thin

arrows); (b) Random Phase Approximation (RPA) process, where thin wiggly lines represent the bare interaction V ,
bold wiggly lines represent the dressed interaction W, and the pair of arrows with opposite directions is the

polarization bubble Π. (c) Self energy, Σ that consists of direct (tadpole) and exchange (shell) terms.

with

[V(q)] =

(
U(q) U(q)
U(q) U(q)

)
. (7)

Further, using the bare and the dressed interactions we compute the direct (ωn-independent) self energy, Σdirect
αβ (k),

and the exchange (ωn-dependent) self-energy, Σ
exchange
αβ (k, iωn), which also involves umklapp processes through k + q,

as

Σdirect
αα (k) = T

∑
ωm

∑
k′

∑
λ

Gλλ(k′, iωm)eiωm0+

Vαλ(q = 0, iωx = 0), (8)

Σ
exchange
αβ (k, iωn) = −T

∑
ωx

∑
q

Gαβ(k + q, iωn + iωx)Wαβ(q, iωx). (9)

The resulting calculated self-energy matrix [Σcalc(k, iωn)] = [Σdirect(k)] + [Σexchange(k, iωn)] is to be compared with
[Σinitial(k, iωn)]. If the difference between them is still larger than some tolerance value, the initial self-energy matrix
is replaced by the mixture of the previously initialized and calculated self-energy matrices, and the calculation must
be iterated until the self-energy matrix is converged.

At each iteration process, however, we need to update the chamical potential (µ). To do this, we first need to obtain
the density of states (DOS), which is related to the imaginary part of the retarded Green function matrix defined in
the real-frequency domain, [GR(k, ω)]. In order to construct [GR(k, ω)] through the Dyson equation [GR(k, ω)] =[
[GR

0 (k, ω)]−1 − [ΣR(k, ω)]
]−1

, we need to transform [Σcalc(k, iωn)] to [ΣR(k, ω)] by means of analytic continuation.
Formally, this process is to change the argument of the function from z = iωn + µ to z = ω + i0+. However, since
we only have the function [Σcalc(k, ω)] available as numerical data, there is no exact way for doing such an analytic
continuation. Alternatively, we may use an approximate way. Here, we choose to use Padé approximation [4] in
which a rational function [P(z)] is constructed as the approximant to the k-averaged self-energy matrix [Σave(z)] =
1
N

∑
k[Σcalc(k, z)], with z a complex energy variable. Each element of the Padé approximant matrix can, in principle,

be obtained through

P(z) =

∑n
i=0 aizi

1 +
∑m

j=1 b jz j , (10)
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where the Padé algorithm searches for the fittest sets of coefficients ai and b j. Having obtained the desired coefficients
ai and b j, we can define the approximate k-averaged self energy as [ΣR

ave(ω)] = [P(ω+ i0+], and then take this into the
Dyson equation to obtain [GR(k, ω)].

The DOS can then be obtained through

DOS(ω) = −
1
π

1
N

∑
k

Im Tr[GR(k, ω)]. (11)

From the obtained DOS function, for the given electron filling value, nfilling, we update the chemical potential (µ) by
requiring that

nfilling =

∫ ∞

−∞

dω DOS(ω) f (ω, µ,T ), (12)

where f (ω, µ,T ) is the Fermi-Dirac distribution function for temperature T .
In this work, we aim to observe how the DOS varies with temperature for the case of no spin symmetry-breaking.

We take several temperature values (T = 200 K, 300 K, and 400 K). The original form of the Coulomb long-ranged
interaction in momentum space reads as

U(q)LR =
1

Vunit cell

e2

ε0εr

1
q2

x + q2
y + q2

z + κ2 , (13)

with εr and κ are to be chosen some presumably realistic values. From here, we take the value of the corresponding
short-ranged Coulomb interaction by averaging U(q)LR over all q values in the BZ

US R =
1
N

∑
q

ULR(q). (14)

RESULTS AND DISCUSSION

Bare DOS
All our calculation results are presented in Fig. 2a, 2b, and 2c. The non-interacting (bare) density of states (DOS)

is shown as the black curves. According to the energy dispersion relation defined in Equation 2, where we choose the
parameters t = 1 eV, Ev = 0, and Ec = Eg − Ev = 3 eV, the bare DOS is symmetric with respect to 0 eV where the
chemical potential lies, as the system is considered to be at half electron filling. The splitting of the DOS into two
bands of width 12t = 12 eV, is to mimic the splitting of π (bonding) and π∗ (anti-bonding) bands usually occurs in
actual semiconductors. Here we choose the initial band gap value to be Eg = Ec − Ev = 3 eV, mimicking the band
gap value of some typical wide-band-gap oxide semiconductor containing some transition metal elements. That the
chemical potential lies in the band gap (µ = 0 eV) assurs that the material represented by this model is an insulator
or a semiconductor. Due to not carrying any electron-electron interactions, the bare DOS profile is independent of
temperature.

Temperature Dependence of the Dressed DOS
Upon incorporation of the GW sel energy, the corrected or the dressed DOS becomes sensitive to temperature.

The red, green, and blue curves in Fig. 2a shows the whole DOS profile shifts to a higher energy due to the Coulomb
repulsive interactions, but each curve remains symmetric with respect to its own shifted chemical potential value as this
is the characteristic of a half-filled system. As expected, the general profile of each DOS curve modifies as compared
to that of the bare DOS [5, 6]. Nevertheless, the accuracy of the detailed structure of the dress DOS may quite depend
on the accuracy of the Padé approximant. Figure 2b displays basically the same sets of DOS curves as already shown
in Fig. 2a, but with abscissa being changed from E to E − µ. This is to emphasize that all the curves stay symmetric
with respect to its own chemical potential. Now, if we look closer around the energy gap region (see Fig. 2c), the gap
region gets widen as temperature decreases, or conversely, the gap tends to get destroyed as temperature increases. It
is theoretically expected that at very high temperatures the gap would completely disappear, and the system becomes
a metal. This is understandable because statistically the effect of temperature is to make higher energy states become
more accessible by electrons, which eventually would make the electrons be more mobile.
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(a)

(b) (c)

FIGURE 2. Bare and GW-dressed DOS: (a) The black curve shows the non-interacting (bare) DOS with energy gap
of 3 eV, while the red, green, and blue curves show the evolution (the right shift and the gap widening) of DOS with
respect to temperature as the GW self-energy is incorporated. ; (b) The same curves as in (a) but plotted with respect
to energy minus the chemical potential (E − µ); (c) The zoomed-in version of (b) highlighting the bandgap widening

as temperature decreases.

CONCLUSION

We have developed tight-binding based GW method applied to a model semiconductor and perform calculations
to test the method. Our calculation results for short-ranged interaction confirm that the semiconductor band gap
increases with the inclusion of e-e interactions. In addition, the chemical potential shifts to a higher energy. By varying
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temperature value, we demonstrate that the correlation effects become stronger as we decrease the temperature, which
reflect in the band gap widening. Apart from possible errors and lack of accuracy in our present results, we believe
that the method we have developed will be useful for further studies dealing with modeling of materials having strong
e-e interactions.
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