

Context for the Intelligent Search of Information

1
Syopiansyah Jaya Putra

2
Ismail Khalil

1
Department of Information System, State Islamic University Syarif Hidayatullah Jakarta, Indonesia

2
Institute of Telecooperation, Johannes Kepler University Linz, Austria

Email:
1
: syopian@uinjkt.ac.id,

2
ismail.khlail@jku.at

 Abstract- Three forms of contextual search have been proposed

in the literature. The first one is to scan the full text of a query to

figure out user needs and based on that scan, HTML pages for

content will return an index of the relevant content. In this case,

the user has no control over the context of the query. The second

form of contextual search is used by meta-search engines and

requires the user to supply explicitly contextual information

about the query to increase the precision of the returned results.

The meta search engine acts as a mediator between the user

query and search engines. This will increase significantly the

precision of the results but add to the complexity of the user

interface. The third form is to automatically infer the context of

the query based on the content of the other documents. This

results in the modification of search results based on previous

knowledge and situations. The work presented in this paper aims

to develop a search engine based on a contextual search for the

translation of the Quran in the Indonesian language in order to

improve the performance of the search engine and provide

information needed by the user based on the context of the query.

In this paper, we present and discuss an algorithm that makes

use of the semantics of an information source in the form of

context to support the intelligent search for information over the

Web or database.

Keywords: Context, intelligence search, contextual search, search

engine

I. INTRODUCTION

 The word context is derived from Latin for “weave

together.” In common usage, it refers to the parts of a written

or spoken statement that precede or follow a specific word or

passage, usually influencing its meaning or effect. Many

words and phrases have multiple possible meanings that are

clarified by the context of their use. For example, the word

“bank” has several meanings: river bank, financial institution

and others. Such ambiguity is rarely a problem in common

practice because content makes the meaning clear: “she is

walking along the bank,” “I paid the money at the bank.”

Context as the associations between a central item of interest

and surrounding items. The existence of the surrounding items

clarifies the “meaning” of the central item. Typically, in

information services, context is coded as metadata describing

both the existence of a relationship between two items and the

nature of the relationship.”

Two strategies have been advocated for the design and

implementation of contextual search: Global As View (GAV)

and Local As View (LAV).

 The (GAV) follows the traditional strategy developed for

federated databases [1]. The global view is constructed by

several layers of views on the relations exported by the

sources. Queries are expressed regarding the global view and

are evaluated in a conventional way [2].

 The (LAV) considers that the relations exported by the

sources are materialized views defined on virtual relations in

the global schema. Queries are still expressed regarding the

global schema. To evaluate a query, a rewriting regarding the

component schemas needs to be found: this process is called

Answering Queries Using Views (AQUV) [2].

 The GAV and the LAV strategies [3] can be qualitatively or

quantitatively compared in terms of their adequacy (1) to

model a particular integration situation, (2) to cope with

autonomy of the sources (sources changing their exported

schemas, joining or leaving the network), and their ability (3)

to answer queries.

 The main arguments against the GAV strategy are that (1) it

may not be able to model the integration situations where

sources are missing to build the complete world view; (2) it

may stop to offer a complete global view as some sources

become unavailable or services are disrupted [4]. In favor of

GAV, it can be argued that most practical applications will

require sufficiently simple global schemas (unions) to avoid

such difficulties and that there might be enough economic

incentives for participating in the network to convince the

sources’ managers to play the game. The strength of GAV is

that, if the modeling is successful, (3) all queries on global

schemas are guaranteed to be answered, and a complete

answer can be constructed.

 The LAV strategy, conversely [4], is designed to cope with a

dynamic, possibly incomplete set of sources. The counterpart

of this flexibility is that all queries may not be answered or

only an incomplete answer can be found. It can be argued for

LAV that to great information infrastructures such as the

WWW, complete answers are rarely expected or needed by

the users: “better some answers than no answer”. Additional

semantic knowledge in the form of “context” can be taken into

account in the GAV strategy to optimize the queries to the

component sources. For instance, a powerful optimization

consists in identifying sources that cannot produce results

participating in answer to a given query or sources that would

produce redundant answers. As we have discussed and

illustrated in [5], there are many very concrete examples

where simple context knowledge about component sources

can help generating more efficient query plans. The

optimization process involved is called Semantic Query

Optimization (SQO).

 In this paper, we argue that there is a relative duality

between LAV and GAV on their use of semantic knowledge

expressed in the form of context. We present and discuss a

variant of the algorithm for Answering Queries Using Views

mailto:syopian@uinjkt.ac.id
mailto:ismail.khlail@jku.at

(AQUV) for the LAV strategy regarding Semantic Query

Optimization (SQO). We call the process of rewriting the

query using semantic knowledge Contextual Search (CS).

II. LITERATURE REVIEW

 Contextual search refers to proactively capturing the

information need of a user by automatically augmenting the

user query with information extracted from the search context;

for example, by using terms from the web page the user is

currently browsing or a file the user is currently editing [6]

Implementing contextual search involves two tasks. The first

is the user interface, which has been extensively discussed

within the context of Y!Q [7]. The second consists of

extracting and representing the context, and using the context

in conjunction with the query

 Search engines, generally, return results without any regard

for the concepts in which the user is interested [10]. Context

Search is different from Keyword Search because Context

Search consider user’s context when searching, meanwhile,

keyword Search just care keyword matching without taking

user’s context into account. Context Search is based on user’s

context which include user’s time, location, input, needs,

habits and background, therefore the information about user’s

interest are to be collected before search, so that Context

Search can understand users’ search intention better [11]

 The ability to promote and re-purpose content in different

contexts along with the facility to suggest and find related

things that weren't directly searched creates a means to surface

seasonal, campaign related or tactically important information.

[9].

 Context is additional information about user’s interest.

Context will be represented by complex context vector, which

is a vector of vectors. It will have number of dimensions equal

to the number of document attributes used for search. Every

dimension will represent one attribute and contains a ranked

vector.[11]

 Contextual search using ontology-based user profiles [11]

consist of the following four steps. First, to represent

information and knowledge in different domain, Domain

Ontology is used to annotate domain information which is the

basis of information representation in Context Search, Second,

to extend the keyword input, with the help of Context

Ontology the keyword inputted by users will be extended to

Search Ontology which normalizes user’s search information

and context information this time, Third, search results are

represented using Faceted Ontology which is also a kind of

Domain Ontology for annotating the target documents, and

Finally, the core of Context Search is to implement ontology

matching. The method is to filter sub-ontology which is the

most similar with Search Ontology from Faceted Ontology.

 Methods for searching with context could be classified as

[11,10]:

- Query rewriting – appends keywords form context to

search query as a string and sends it to standard search

engine. Aaunt’s each query with appropriate terms from

the search context and uses an off-the-shelf web search

engine to answer this augmented query [6]

- Iterative-Filtering meta-Search – generates many

different sub-queries and sends them to multiple search

engines. Results are re-ranked and aggregated into one

set. [9,8], generates multiple sub queries based on the user

query and appropriate terms from the search context, uses

an off-the-shelf search engine to answer these sub queries,

and re-ranks the results of the sub queries using rank

aggregation methods [6].

- Rank-biasing – Query and context of keywords are sent to

modified search engine as complex query. At first,

method finds documents matching query and then re-

ranks them by fitness to context [11] [6], generates a

representation of the context and answers queries using a

custom-built search engine that exploits this

representation [6].

- Flooding algorithm to match Search Ontology with

faceted Ontology [9]

- Inconsistency Ontology Reasoning Framework

A. LAV as a Search Strategy

 For our purpose, the schema of a relation is solely defined

by the name of the relation and its arity (number of attributes).

As we have seen, LAV models the integration situation as a

database (schema) DB = (SEDB , SIDB, V, C) where SEDB is the

global schema, SIDB is the union of the local schemas, V is the

set of view definitions for the component relations in terms of

the global relations, and C is a set of contexts on the

component schemas.

 Despite the reality of the situation in which the global

schema is a set of virtual relations and the local schema is a

set of materialized relations, DB = (SEDB , SIDB, V,C) stands for

a database in which:
 SEDB is the set of schemas of the relations in the extensional

ddatabase, i.e. the set of stored relations,

 SIDB is the set of schemas of the relations in the intentional

database, i.e. the set of relations defined by means of views

(we call both the relation and its definition a view, when

there is no ambiguity

 V is the set of view definitions in Datalog (range-restricted

function free Horn clauses),

 IC is the set of contexts in Datalog

 (i.e. we allow variables

occurring only in the head of the clause to be existentially

quantified after all other variables are universally quantified

as usual).

Queries are views, which are not defined a priori in the

database schema

 In this and the following section, we concentrate on the

simplest problem of Project-Select-Join (or PSJ for short)

queries and PSJ-view definitions. Therefore we consider an

initial database DB such that view definitions are conjunctive,

i.e. views defined by means of a single Horn clause. We also

consider conjunctive queries only: the single Horn clause

defining the query is also restricted to contain literals from the

extensional database in its body.

 Given an instance of the extensional database I, i.e. a set of

tuples for the relation SEDB, an instance of the database is

defined by the minimal model of V  I. An instance of the

database is consistent if it is a model of IC. In our case, we

only need to verify that I is also a model of IC. Since the

views are materialized only, say J is the actual instance of the

intentional database, an instance of the database is an instance

I  J such that it corresponds to the minimal model of I  V,

and I is consistent with C. Notice that I may not be unique.

For the sake of simplicity, we will assume that the designer of

the integration solution has been careful and that a minimal

instance is guaranteed to exist.

B. A Dual View of the Database

 In order to comply with the reality of the situation in the

modeling, we would need to construct a database DB” = (SIDB,

SEDB, V”, C”) with the same instances as DB. In [12] a

polynomial time algorithm is given which constructs similar

database (DB’” = (SIDB, SEDB, V’”, 0)). However, it is also

shown that, in the general case, the new database is only

maximally contained in the initial database DB’” =  max DB.

In standard database terms, any set of views may not be a

lossless decomposition.

 Using similar transformations like the one used in [4], we

construct a database DB’ = (SIDB  SEDB, 0, 0,C’) which has

the same instances as DB.

To construct C’ we use Clark’s completion (see [13]) of the

view definitions V. In this way we explicitly express the

Closed World Assumption. More precisely, given a view

definition for v:
 v (X)  B(Y)

we first make all the implicit quantifications explicit:

 X v(X)   (Y  X),B (Y)

the completed axiom is

 v (X)  (Y  X),B(Y)

which we transform into two integrity constraints:
 (1) v (X)  (Y  X),B(Y)

 (2) B(Y)  v (X)

Notice that we keep a conjunction of literals in the right-hand

side of the first constraint instead of separating it in as many

contexts in the Horn clause as there are literals in B(Y).

 If we call V̂ the set of contexts of type (2), the new

database DB’ = (SEDB, SIDB, 0,0,V C  V̂).

We claim but do not prove that the original and transformed

databases have the same instances.

Let us now look at the application of the transformation on an

example.

Example 1 Let us consider the following database schema:

 DB = ({w/3}, {v/2}, {v(X,Y)  p(X,Y,Z)}, 0)

The view v/2 is the projection of the first two attributes of the

global relation w/3. According to the transformation of the

database we have described, we generate the following two

contexts:

 i1 : p (X,Y,Z)  v(X,Y)

 i2 : v(X,Y)  Z, p (X,Y,Z)

we are now considering the database schema:

 DB’ = ({w/3, v/2},0, 0, { i1 , i2 })

Example 2 According to the transformation of the database

we have described, we generate the following four contexts:

 i1 : w (T, I, A,S, P)  c(T, A, S)

 i2 : c(T, A, S)   I,P, w (T, I, A, S, P)

 i3 : w (T, I, A,S, P)  s(I, T, P)

 i4 : s(I, T, P)   A,S, w (T, I, A,S, P)

We are now considering the database schema:

DB’ = ({w/5, v/3},0, 0, { i1 , i2, i3 , i4 , i5})

Where i5 : s(I, T,P1), s(I, T, P2)  P1 = P2

C. An Algorithm For Contextual Search

 Since the two databases have the same instances, we can

now define AQUV as a specific SQO process: we want to

transform the query into a semantically equivalent query,

which uses literals from the initial intentional database or

built-in literals only. Indeed, the algorithm we propose

generates strong folding; although it could easily be modified

to produce partial folding, we have restricted its output to

complete folding.

 The algorithm is similar to the one in [14]. However, we

highlight the relationship between this transformation and

semantic query optimization as described in [12] and [13].

Given a query of the form q(X)  l1, …, ln , for each

constraint whose body subsumes a subset of the body of the

query, we call the head of the constraint after matching a

residue. For each residue it is possible:

 either to add it to the query [query expansion or join-

introduction]

 alternatively, to eliminate a literal li in the body of the

query provided that certain conditions be fulfilled [query

contraction or join-elimination]

According to [15], Join elimination is possible if [the residue]

r can be resolved [unified] with any of the li,   (r)= (

li), and the resulting resolved, after elimination, contains both

[all] the original terms in all lj , j  i. This definition trivially

extends to the case where the residue is of form r1,… , rn 

and a set of literals li such that a subset of the literals in the

residue can be resolved (unified) with the set of literals li, in

the body of the clause. The same conditions as above apply to

the resulting query.

 The correctness of the join-introduction and join-elimination

is proved in [13]: the semantic query transformation leads to

semantically equivalent queries.

 The principle of the algorithm is to use the rules of type (2)

(subsection 3.1) for expansion and the rules of type (1) for

contraction.

D. Algorithm and Implementation

 After the generation of the sets of integrity constraints used

for join-introduction (I-Rule) and join-elimination (E-Rule),

respectively, the algorithm can be summarized as done in

Figure 1.
 The implementation of this algorithm in Prolog can be done

in two different ways. Views, queries, and constraints can be

represented by ground expressions, in which case some

special notation is used to represent the variables in the query,

and unification, sub assumption, or variance need to be written

from scratch. Alternatively, the variables, terms, and constants

in the views, queries, and constraints can be represented by

variables, terms, and constants of Prolog. In this case, Prolog

Unification as well as the built-in or library predicates for

(term-) subsumption and variance can be used. Term

decomposition using = ../2 or variables/. I support can not be

avoided (e.g. find the distinguished variables). The latter

implementation is not necessarily simpler as it hides some

important aspects of the implementation and runs the risk for

the programmer to inappropriately unify terms. The rules and

procedures for join-introduction and join-elimination resemble

the Constraint Handling Rules. It is possible indeed to use an

approach similar to the one we advocated in [12] in order to

implement the above described algorithm.

Figure 1: CS algorithm

VI. CONCLUSION AND FUTURE WORK

 In this paper, we presented and discussed an algorithm that

makes use of the semantics of an information source in the

form of context to support the intelligent search for

information over the Web or a database. This final goal of the

project from which this paper stemmed is to develop a search

engine based on a contextual search for the translation of the

Quran in the Indonesian language to improve the performance

of the search engine and provide information needed by the

user based on the context of the query. One approach in

conducting a contextual search for the Indonesian translation

of the Quran is to use ontologies to map relationships between

documents so that it can do a query against a specific keyword

to the overall structure of an existing document. The

methodology of a Search engine with a contextual design

based on Rank Biasing is as follow preprocessing, a query

with context.

REFERENCES

[1] Sheath and J. Larson. Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Database. ACM
Computing Surveys 1990.

[2] Ibrahim, I. K., Winiwarter, W., & Bressan, S. (2001). Rewriting

Rules for Semantic Query Transformation in E-commerce
Applications. In Knowledge Management And Intelligent

Enterprises (pp. 130-143).

[3] Bressan, S. , Ibrahim, I, Soesioantto. (2002).IKA: Unity in

Heterogeneity. International Conference and Web-based Application

& Services.

[4] Duschka and M. Genesereth. Answering Queries Using Recursive
Views. In Principles Of Database Systems (PODS), 1997.

[5] Khalil, I., Semantic Query Transformation for the Intelligent

Integration of Information Sources, Ph.D., thesis, Gadjah Mada
University, 2001.

[6] Kraft, R., Chang, C. C., Maghoul, F., & Kumar, R. (2006, May).

Searching for context. In Proceedings of the 15th International
Conference on World Wide Web (pp. 477-486). ACM

[7] Greenly, W., Sandeman-Craik, C., Otero, Y., & Streit, J. (2011).

Case Study: Contextual Search for Volkswagen and the Automotive
Industry. Tribal DDB UK.

[8] Challam, V., Gauch, S., & Chandramouli, A. (2007, May).

Contextual search using ontology-based user profiles. In Large-Scale
Semantic Access to Content (Text, Image, Video, and Sound) (pp.

612-617). LE CENTRE DE HAUTES ETUDES

INTERNATIONALES D'INFORMATIQUE DOCUMENTAIRE

[9] Zhuang, Z., & Min, W. (2012, October). Context Search Based on

Inconsistent Ontology Reasoning. In Semantics, Knowledge and

Grids (SKG), 2012 Eighth International Conference on (pp. 185-
188). IEEE

[10] Navrat, P., Taraba, T., Ezzeddine, A. B., & Chuda, D. (2008,

September). Context search enhanced by readability index. In IFIP
International Conference on Artificial Intelligence in Theory and

Practice (pp. 373-382). Springer US.

[11] Navrat, P., & Taraba, T. (2007, November). Context search. In
Proceedings of the 2007 IEEE/WIC/ACM International Conferences

on Web Intelligence and Intelligent Agent Technology-Workshops

(pp. 99-102). IEEE Computer Society.
[12] S. Chakravarthy, J. Grant, and J. Minker. Logic Based Approach to

Semantic Query Optimization. ACM Transactions on Database
Systems, 1990.

[13] J. Minker. Foundation of Deductive Databases and Logic

Programming. Morgan Kaufmann, 1987.
[14] Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering

Queries Using Views. In Proc. Of the ACM Conf. On Principles of

Database Systems (PODS), 1995.
[15] R. Ramakrishnan and A. Silberschatz. Scalable Integration of Data

Collection on the Web. Technical report, University of Wisconsin-

Madison, 1998.

Input:

 Q: query

 I-Rule: set of contexts

 E-Rule: set of context

Output:

 Q : transformed query

for each R  I-Rule

 for each  such that (Body(R))  Body (Q)

 I := I  Head((R))

 end for

end for

for each L  I with predicate P

 for each R in E-Rule(P)

 if  such that  (Body(R)) = L

 then remove any literal

 matching Head ((R)) from Body

(Q)

 unless this would remove a

distinguished variable

 or leave a variable bound

 end for

end for

if Body (Q) = 0 then Q := I

