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    Abstract- Three forms of contextual search have been proposed 

in the literature. The first one is to scan the full text of a query to 

figure out user needs and based on that scan, HTML pages for 

content will return an index of the relevant content. In this case, 

the user has no control over the context of the query. The second 

form of contextual search is used by meta-search engines and 

requires the user to supply explicitly contextual information 

about the query to increase the precision of the returned results. 

The meta search engine acts as a mediator between the user 

query and search engines. This will increase significantly the 

precision of the results but add to the complexity of the user 

interface. The third form is to automatically infer the context of 

the query based on the content of the other documents. This 

results in the modification of search results based on previous 

knowledge and situations. The work presented in this paper aims 

to develop a search engine based on a contextual search for the 

translation of the Quran in the Indonesian language in order to 

improve the performance of the search engine and provide 

information needed by the user based on the context of the query. 

In this paper, we present and discuss an algorithm that makes 

use of the semantics of an information source in the form of 

context to support the intelligent search for information over the 

Web or database. 
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I. INTRODUCTION 

 

   The word context is derived from Latin for “weave 

together.” In common usage, it refers to the parts of a written 

or spoken statement that precede or follow a specific word or 

passage, usually influencing its meaning or effect. Many 

words and phrases have multiple possible meanings that are 

clarified by the context of their use. For example, the word 

“bank” has several meanings: river bank, financial institution 

and others. Such ambiguity is rarely a problem in common 

practice because content makes the meaning clear: “she is 

walking along the bank,” “I paid the money at the bank.” 

Context as the associations between a central item of interest 

and surrounding items. The existence of the surrounding items 

clarifies the “meaning” of the central item. Typically, in 

information services, context is coded as metadata describing 

both the existence of a relationship between two items and the 

nature of the relationship.” 

Two strategies have been advocated for the design and 

implementation of contextual search: Global As View (GAV) 

and Local As View (LAV). 

   The (GAV) follows the traditional strategy developed for 

federated databases [1]. The global view is constructed by 

several layers of views on the relations exported by the 

sources. Queries are expressed regarding the global view and 

are evaluated in a conventional way [2].   

   The (LAV) considers that the relations exported by the 

sources are materialized views defined on virtual relations in 

the global schema. Queries are still expressed regarding the 

global schema. To evaluate a query, a rewriting regarding the 

component schemas needs to be found: this process is called 

Answering Queries Using Views (AQUV) [2].  

   The GAV and the LAV strategies  [3] can be qualitatively or 

quantitatively compared in terms of their adequacy (1) to 

model a particular integration situation, (2) to cope with 

autonomy of the sources (sources changing their exported 

schemas, joining or leaving the network), and their ability (3) 

to answer queries. 

   The main arguments against the GAV strategy are that (1) it 

may not be able to model the integration situations where 

sources are missing to build the complete world view; (2) it 

may stop to offer a complete global view as some sources 

become unavailable or services are disrupted [4]. In favor of 

GAV, it can be argued that most practical applications will 

require sufficiently simple global schemas (unions) to avoid 

such difficulties and that there might be enough economic 

incentives for participating in the network to convince the 

sources’ managers to play the game. The strength of GAV is 

that, if the modeling is successful, (3) all queries on global 

schemas are guaranteed to be answered, and a complete 

answer can be constructed. 

   The LAV strategy, conversely [4], is designed to cope with a 

dynamic, possibly incomplete set of sources. The counterpart 

of this flexibility is that all queries may not be answered or 

only an incomplete answer can be found. It can be argued for 

LAV that to great information infrastructures such as the 

WWW, complete answers are rarely expected or needed by 

the users: “better some answers than no answer”. Additional 

semantic knowledge in the form of “context” can be taken into 

account in the GAV strategy to optimize the queries to the 

component sources. For instance, a powerful optimization 

consists in identifying sources that cannot produce results 

participating in answer to a given query or sources that would 

produce redundant answers. As we have discussed and 

illustrated in [5], there are many very concrete examples 

where simple context knowledge about component sources 

can help generating more efficient query plans. The 

optimization process involved is called Semantic Query 

Optimization (SQO). 

   In this paper, we argue that there is a relative duality 

between LAV and GAV on their use of semantic knowledge 

expressed in the form of context. We present and discuss a 

variant of the algorithm for Answering Queries Using Views 
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(AQUV) for the LAV strategy regarding Semantic Query 

Optimization (SQO). We call the process of rewriting the 

query using semantic knowledge Contextual Search (CS). 
 

II.    LITERATURE REVIEW 

 

   Contextual search refers to proactively capturing the 

information need of a user by automatically augmenting the 

user query with information extracted from the search context; 

for example, by using terms from the web page the user is 

currently browsing or a file the user is currently editing [6] 

Implementing contextual search involves two tasks. The first 

is the user interface, which has been extensively discussed 

within the context of Y!Q [7]. The second consists of 

extracting and representing the context, and using the context 

in conjunction with the query 

   Search engines, generally, return results without any regard 

for the concepts in which the user is interested [10]. Context 

Search is different from Keyword Search because Context 

Search consider user’s context when searching, meanwhile, 

keyword Search just care keyword matching without taking 

user’s context into account. Context Search is based on user’s 

context which include user’s time, location, input, needs, 

habits and background, therefore the information about user’s 

interest are to be collected before search, so that Context 

Search can understand users’ search intention better [11] 

   The ability to promote and re-purpose content in different 

contexts along with the facility to suggest and find related 

things that weren't directly searched creates a means to surface 

seasonal, campaign related or tactically important information. 

[9]. 

   Context is additional information about user’s interest. 

Context will be represented by complex context vector, which 

is a vector of vectors. It will have number of dimensions equal 

to the number of document attributes used for search. Every 

dimension will represent one attribute and contains a ranked 

vector.[11] 

   Contextual search using ontology-based user profiles [11] 

consist of the following four steps. First, to represent 

information and knowledge in different domain, Domain 

Ontology is used to annotate domain information which is the 

basis of information representation in Context Search, Second, 

to extend the keyword input, with the help of Context 

Ontology the keyword inputted by users will be extended to 

Search Ontology which normalizes user’s search information 

and context information this time, Third, search results are 

represented using Faceted Ontology which is also a kind of 

Domain Ontology for annotating the target documents, and 

Finally, the core of Context Search is to implement ontology 

matching. The method is to filter sub-ontology which is the 

most similar with Search Ontology from Faceted Ontology. 

   Methods for searching with context could be classified as 

[11,10]: 

- Query rewriting – appends keywords form context to 

search query as a string and sends it to standard search 

engine. Aaunt’s each query with appropriate terms from 

the search context and uses an off-the-shelf web search 

engine to answer this augmented query [6] 

- Iterative-Filtering meta-Search – generates many 

different sub-queries and sends them to multiple search 

engines. Results are re-ranked and aggregated into one 

set. [9,8], generates multiple sub queries based on the user 

query and appropriate terms from the search context, uses 

an off-the-shelf search engine to answer these sub queries, 

and re-ranks the results of the sub queries using rank 

aggregation methods [6]. 

- Rank-biasing – Query and context of keywords are sent to 

modified search engine as complex query. At first, 

method finds documents matching query and then re-

ranks them by fitness to context [11] [6], generates a 

representation of the context and answers queries using a 

custom-built search engine that exploits this 

representation [6]. 

- Flooding algorithm to match Search Ontology with 

faceted Ontology [9] 

- Inconsistency Ontology Reasoning Framework  

 

A. LAV as a  Search Strategy 

   For our purpose, the schema of a relation is solely defined 

by the name of the relation and its arity (number of attributes). 

As we have seen, LAV models the integration situation as a 

database (schema) DB = (SEDB , SIDB, V, C) where SEDB   is the 

global schema, SIDB  is the union of the local schemas, V is the 

set of view definitions for the component relations in terms of 

the global relations, and C is a set of contexts on the 

component schemas. 

   Despite the reality of the situation in which the global 

schema is a set of virtual relations and the local schema is a 

set of materialized relations, DB = (SEDB , SIDB, V,C) stands for 

a database in which: 
 SEDB is the set of schemas of the relations in the extensional 

ddatabase, i.e. the set of stored relations, 

 SIDB is the set of schemas of the relations in the intentional 

database, i.e. the set of relations defined by means of views 

(we call both the relation and its definition a view, when 

there is no ambiguity 

 V is the set of view definitions in Datalog (range-restricted 

function free Horn clauses), 

 IC is the set of contexts in Datalog

 (i.e. we allow variables 

occurring only in the head of the clause to be existentially 

quantified after all other variables are universally quantified 

as usual). 

Queries are views, which are not defined a priori in the 

database schema 

   In this and the following section, we concentrate on the 

simplest problem of Project-Select-Join (or PSJ for short) 

queries and PSJ-view definitions. Therefore we consider an 

initial database DB such that view definitions are conjunctive, 

i.e. views defined by means of a single Horn clause. We also 



 

consider conjunctive queries only: the single Horn clause 

defining the query is also restricted to contain literals from the 

extensional database in its body. 

   Given an instance of the extensional database I, i.e. a set of 

tuples for the relation SEDB, an instance of the database is 

defined by the minimal model of V  I. An instance of the 

database is consistent if it is a model of IC. In our case, we 

only need to verify that I is also a model of IC. Since the 

views are materialized only, say J is the actual instance of the 

intentional database, an instance of the database is an instance 

I  J such that it corresponds to the minimal model of I  V, 

and I is consistent with C. Notice that I may not be unique. 

For the sake of simplicity, we will assume that the designer of 

the integration solution has been careful and that a minimal 

instance is guaranteed to exist. 

 

B. A Dual View of the Database 

 
   In order to comply with the reality of the situation in the 

modeling, we would need to construct a database DB” = (SIDB, 

SEDB, V”, C”) with the same instances as DB. In [12] a 

polynomial time algorithm is given which constructs similar 

database (DB’” = (SIDB, SEDB, V’”, 0)). However, it is also 

shown that, in the general case, the new database is only 

maximally contained in the initial database DB’” =  max DB. 

In standard database terms, any set of views may not be a 

lossless decomposition. 

   Using similar transformations like the one used in [4], we 

construct a database DB’ = (SIDB  SEDB, 0, 0,C’) which has 

the same instances as DB. 

To construct C’ we use Clark’s completion (see [13]) of the 

view definitions V. In this way we explicitly express the 

Closed World Assumption. More precisely, given a view 

definition for v: 
 v (X)  B(Y) 

we first make all the implicit quantifications explicit: 

 X v(X)    (Y  X),B (Y) 

the completed axiom is 

 v (X)   (Y  X),B(Y) 

which we transform into two integrity constraints: 
 (1) v (X)   (Y  X),B(Y) 

 (2) B(Y)  v (X) 

Notice that we keep a conjunction of literals in the right-hand 

side of the first constraint instead of separating it in as many 

contexts in the Horn clause as there are literals in B(Y). 

   If we call V̂  the set of contexts of type (2), the new 

database DB’ = (SEDB, SIDB, 0,0,V C  V̂ ). 

We claim but do not prove that the original and transformed 

databases have the same instances. 

Let us now look at the application of the transformation on an 

example. 

Example 1 Let us consider the following database schema: 

 DB = ({w/3}, {v/2}, {v(X,Y)  p(X,Y,Z)}, 0) 

The view v/2 is the projection of the first two attributes of the 

global relation w/3. According to the transformation of the 

database we have described, we generate the following two 

contexts: 

 i1 : p (X,Y,Z)  v(X,Y) 

 i2 : v(X,Y)   Z, p (X,Y,Z)  

we are now considering the database schema: 

 DB’ = ({w/3, v/2},0, 0, { i1 , i2 }) 

 
Example 2 According to the transformation of the database 

we have described, we generate the following four contexts: 

 i1 : w (T, I, A,S, P)  c(T, A, S) 

 i2 : c(T, A, S)    I,P, w (T, I, A, S, P)  

 i3 : w (T, I, A,S, P)  s(I, T, P) 

 i4 : s(I, T, P)    A,S, w (T, I, A,S, P)  

We are now considering the database schema: 

DB’ = ({w/5, v/3},0, 0, { i1 , i2, i3 , i4 , i5}) 

Where i5 : s(I, T,P1), s(I, T, P2)  P1 = P2 

 

C. An  Algorithm For Contextual Search  

    

   Since the two databases have the same instances, we can 

now define AQUV as a specific SQO process: we want to 

transform the query into a semantically equivalent query, 

which uses literals from the initial intentional database or 

built-in literals only. Indeed, the algorithm we propose 

generates strong folding; although it could easily be modified 

to produce partial folding, we have restricted its output to 

complete folding. 

   The algorithm is similar to the one in [14]. However, we 

highlight the relationship between this transformation and 

semantic query optimization as described in [12] and [13]. 

Given a query of the form q( X )  l1, …, ln , for each 

constraint whose body subsumes a subset of the body of the 

query, we call the head of the constraint after matching a 

residue. For each residue it is possible: 

 either to add it to the query [query expansion or join-

introduction] 

 alternatively, to eliminate a literal li in the body of the 

query provided that certain conditions be fulfilled [query 

contraction or join-elimination] 

According to [15], Join elimination is possible if [the residue] 

r can be resolved [unified] with any of the li,   ( r )=  ( 

li), and the resulting resolved, after elimination, contains both 

[all] the original terms in all lj , j  i. This definition trivially 

extends to the case where the residue is of form r1,… , rn   

and a set of literals li such that a subset of the literals in the 

residue can be resolved (unified) with the set of literals li, in 

the body of the clause. The same conditions as above apply to 

the resulting query. 

   The correctness of the join-introduction and join-elimination 

is proved in [13]: the semantic query transformation leads to 

semantically equivalent queries. 

   The principle of the algorithm is to use the rules of type (2) 

(subsection 3.1) for expansion and the rules of type (1) for 

contraction. 

 

 



 

D. Algorithm and Implementation  

 

   After the generation of the sets of integrity constraints used 

for join-introduction (I-Rule) and join-elimination (E-Rule), 

respectively, the algorithm can be summarized as done in 

Figure 1. 
   The implementation of this algorithm in Prolog can be done 

in two different ways. Views, queries, and constraints can be 

represented by ground expressions, in which case some 

special notation is used to represent the variables in the query, 

and unification, sub assumption, or variance need to be written 

from scratch. Alternatively, the variables, terms, and constants 

in the views, queries, and constraints can be represented by 

variables, terms, and constants of Prolog. In this case, Prolog 

Unification as well as the built-in or library predicates for 

(term-) subsumption and variance can be used. Term 

decomposition using = ../2 or variables/. I support can not be 

avoided (e.g. find the distinguished variables). The latter 

implementation is not necessarily simpler as it hides some 

important aspects of the implementation and runs the risk for 

the programmer to inappropriately unify terms. The rules and 

procedures for join-introduction and join-elimination resemble 

the Constraint Handling Rules. It is possible indeed to use an 

approach similar to the one we advocated in [12] in order to 

implement the above described algorithm.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: CS algorithm 

 

VI. CONCLUSION AND FUTURE WORK 

 
    In this paper, we presented and discussed an algorithm that 

makes use of the semantics of an information source in the 

form of context to support the intelligent search for 

information over the Web or a database. This final goal of the 

project from which this paper stemmed is to develop a search 

engine based on a contextual search for the translation of the 

Quran in the Indonesian language to improve the performance 

of the search engine and provide information needed by the 

user based on the context of the query. One approach in 

conducting a contextual search for the Indonesian translation 

of the Quran is to use ontologies to map relationships between 

documents so that it can do a query against a specific keyword 

to the overall structure of an existing document.  The 

methodology of a Search engine with a contextual design 

based on Rank Biasing is as follow preprocessing, a query 

with context. 
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Input: 

 Q: query 

 I-Rule: set of contexts  

 E-Rule: set of context 

Output: 

 Q : transformed query 

for each R  I-Rule 

 for each  such that (Body( R ))  Body (Q) 

 I := I  Head(( R )) 

 end for 

end for 

 

for each L  I with predicate P 

 for each R in E-Rule(P) 

  if  such that  (Body( R )) = L 

  then remove any literal 

  matching Head (( R )) from Body 

(Q) 

  unless this would remove a 

distinguished variable 

  or leave a variable bound 

 end for 

end for 

if Body (Q) = 0 then Q := I 


